A Semantics for Nabla

نویسنده

  • Jean Goubault-Larrecq
چکیده

We give a semantics for a classical variant of Dale Miller and Alwen Tiu’s logic FOλ∇. No such semantics seems to have existed for the nabla operator, except for one given by U. Schöpp. Our semantics validates the rule that nabla x implies exists x, but is otherwise faithful to the authors’ original intentions. The semantics is based on category of so-called nabla-sets, which we define as presheaves over the poset of natural numbers, with additional generic elements at each level. The semantics is sound, complete for Henkin structures, and complete for standard structures in the case

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALinear LogicViewofGamma Style Computations as Proof Searches

Using the methodology of abstract logic programming in linear logic, we establish a correct and complete translation between the language Nabla and rst order linear logic. Nabla is a modiication of the coordination language Gamma with parallel and sequential composition. Nabla, without modifying Gamma basic computational model, is amenable to this kind of analysis, at the price of a weaker expr...

متن کامل

Nabla discrete fractional calculus and nabla inequalities

Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .

متن کامل

On the existence of solution for a $k$-dimensional system of three points nabla fractional finite difference equations

In this paper, we investigate the existence of solution for a k-dimensional system of three points nabla fractional finite difference equations. Also, we present an example to illustrate our result.

متن کامل

Henstock–Kurzweil delta and nabla integrals

We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.

متن کامل

Matrix Mittag-Leffler functions of fractional nabla calculus

In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016